Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 4504, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37587144

RESUMEN

SMNDC1 is a Tudor domain protein that recognizes di-methylated arginines and controls gene expression as an essential splicing factor. Here, we study the specific contributions of the SMNDC1 Tudor domain to protein-protein interactions, subcellular localization, and molecular function. To perturb the protein function in cells, we develop small molecule inhibitors targeting the dimethylarginine binding pocket of the SMNDC1 Tudor domain. We find that SMNDC1 localizes to phase-separated membraneless organelles that partially overlap with nuclear speckles. This condensation behavior is driven by the unstructured C-terminal region of SMNDC1, depends on RNA interaction and can be recapitulated in vitro. Inhibitors of the protein's Tudor domain drastically alter protein-protein interactions and subcellular localization, causing splicing changes for SMNDC1-dependent genes. These compounds will enable further pharmacological studies on the role of SMNDC1 in the regulation of nuclear condensates, gene regulation and cell identity.


Asunto(s)
Aptámeros de Nucleótidos , Proteínas del Complejo SMN , Condensados Biomoleculares , Carbocianinas , Motas Nucleares , Dominio Tudor
2.
Cell Rep ; 40(9): 111288, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36044849

RESUMEN

Insulin expression is primarily restricted to the pancreatic ß cells, which are physically or functionally depleted in diabetes. Identifying targetable pathways repressing insulin in non-ß cells, particularly in the developmentally related glucagon-secreting α cells, is an important aim of regenerative medicine. Here, we perform an RNA interference screen in a murine α cell line to identify silencers of insulin expression. We discover that knockdown of the splicing factor Smndc1 triggers a global repression of α cell gene-expression programs in favor of increased ß cell markers. Mechanistically, Smndc1 knockdown upregulates the ß cell transcription factor Pdx1 by modulating the activities of the BAF and Atrx chromatin remodeling complexes. SMNDC1's repressive role is conserved in human pancreatic islets, its loss triggering enhanced insulin secretion and PDX1 expression. Our study identifies Smndc1 as a key factor connecting splicing and chromatin remodeling to the control of insulin expression in human and mouse islet cells.


Asunto(s)
Ensamble y Desensamble de Cromatina , Células Secretoras de Glucagón , Células Secretoras de Insulina , Islotes Pancreáticos , Factores de Empalme de ARN , Empalme del ARN , Proteínas del Complejo SMN , Animales , Células Secretoras de Glucagón/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Empalme del ARN/genética , Factores de Empalme de ARN/metabolismo , Proteínas del Complejo SMN/metabolismo , Factores de Transcripción/metabolismo
3.
Mol Metab ; 54: 101329, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34454092

RESUMEN

OBJECTIVE: The loss of forkhead box protein O1 (FoxO1) signaling in response to metabolic stress contributes to the etiology of type II diabetes, causing the dedifferentiation of pancreatic beta cells to a cell type reminiscent of endocrine progenitors. Lack of methods to easily model this process in vitro, however, have hindered progress into the identification of key downstream targets and potential inhibitors. We therefore aimed to establish such an in vitro cellular dedifferentiation model and apply it to identify novel agents involved in the maintenance of beta-cell identity. METHODS: The murine beta-cell line, Min6, was used for primary experiments and high-content screening. Screens encompassed a library of small-molecule drugs representing the chemical and target space of all FDA-approved small molecules with an automated immunofluorescence readout. Validation experiments were performed in a murine alpha-cell line as well as in primary murine and human diabetic islets. Developmental effects were studied in zebrafish and C. elegans models, while diabetic db/db mouse models were used to elucidate global glucose metabolism outcomes. RESULTS: We show that short-term pharmacological FoxO1 inhibition can model beta-cell dedifferentiation by downregulating beta-cell-specific transcription factors, resulting in the aberrant expression of progenitor genes and the alpha-cell marker glucagon. From a high-content screen, we identified loperamide as a small molecule that can prevent FoxO inhibitor-induced glucagon expression and further stimulate insulin protein processing and secretion by altering calcium levels, intracellular pH, and FoxO1 localization. CONCLUSIONS: Our study provides novel models, molecular targets, and drug candidates for studying and preventing beta-cell dedifferentiation.


Asunto(s)
Proteína Forkhead Box O1/metabolismo , Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Adulto , Animales , Desdiferenciación Celular , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad
4.
Cell ; 168(1-2): 86-100.e15, 2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-27916275

RESUMEN

Type 1 diabetes is characterized by the destruction of pancreatic ß cells, and generating new insulin-producing cells from other cell types is a major aim of regenerative medicine. One promising approach is transdifferentiation of developmentally related pancreatic cell types, including glucagon-producing α cells. In a genetic model, loss of the master regulatory transcription factor Arx is sufficient to induce the conversion of α cells to functional ß-like cells. Here, we identify artemisinins as small molecules that functionally repress Arx by causing its translocation to the cytoplasm. We show that the protein gephyrin is the mammalian target of these antimalarial drugs and that the mechanism of action of these molecules depends on the enhancement of GABAA receptor signaling. Our results in zebrafish, rodents, and primary human pancreatic islets identify gephyrin as a druggable target for the regeneration of pancreatic ß cell mass from α cells.


Asunto(s)
Artemisininas/farmacología , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Modelos Animales de Enfermedad , Receptores de GABA-A/metabolismo , Transducción de Señal , Animales , Arteméter , Artemisininas/administración & dosificación , Proteínas Portadoras/metabolismo , Transdiferenciación Celular/efectos de los fármacos , Células Cultivadas , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus Tipo 1/patología , Perfilación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Ratones , Estabilidad Proteica/efectos de los fármacos , Ratas , Análisis de la Célula Individual , Factores de Transcripción/metabolismo , Pez Cebra , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...